Lecture 1 : Introduction to Convex Optimization CS709

Instructor: Prof. Ganesh Ramakrishnan
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Introduction: Mathematical optimization

o Motivating Example
o Applications
o Convex optimization
o Least-squares(LS) and linear programming(LP) - Very common place
L5
Convex
Optimization
Submodular
Optimization
(Gscrete)
General Opt,
Several of these are either

8) Composed andior
b) Look similar 1o convex
optimization.
o Course goals and topics
@ Nonlinear optimization
o Brief history of convex optimization
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Mathematical optimization

. 0 b
3 o
(Mathematical) Optimization problem:- g'*.

minimize  fy(x)
X
subject to  fi(x) < b;, i=1,...,m.

-l .
x = (X1,...,Xp) : optimization variables ;;(17 <0
fi: R" - R, i=1,...,m: constraint functions

optimal solution x* has smallest value of fy among all vectors that satisfy the constraints
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Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.

Hint: First work out the problem in lower dimensions
@ Sphere S, C R" centered at 0 is expressed as: ) l ux “2.5 Y—}
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Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.

Hint: First work out the problem in lower dimensions.
o Sphere S, C R" centered at 0 is expressed as: S = {u € R"|||uf2 < r}

o Ellipsoid £ C R7 is expressed as: { { ( AN+ (a" < Ijhés
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Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.
Hint: First work out the problem in lower dimensions.

@ Sphere S, C R" centered at 0 is expressed as: S = {u € R||ull2 < r}

@ Ellipsoid £ C R" is expressed as:
E={veERNAV+Db e S} ={veR|Av+Db|s <1}. Here, Ac S, thatis, Ais
an n x n (strictly) positive definite matrix.

@ The optimization problem will be: S’ kﬂ
]g] minimize det(A™1) -~ 90)( X
b [ ,( ' la11,a12...,@nn,b1,..bp) P\c’
o

au s - Qin subject to Av >0, Vv 7& 0
A :“ 7\(!)7\ A) qn(“ >Q|Av+bH2<1 Vel

G - - Qnn .ﬁmrl\_;{;) when ¥ ¢
o [b-- b C is Doly 40N ccé
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Every Problem can be posed as an Optimization Problem (contd.)

@ Given a polygon P find the ellipsoid £ that is of smallest volume such that P C £.
@ Let vi,vy,...v, be the corners of the polygon P

@ The optimization problem will be:

minimize det(A™1)
[311,312,..,ann,b1,..bn]
subject to —vIAV>0, VY v#0
JAv; + bla < 1, i€ {1.p}
v \; 4 a~e Neyhtes
N
¢ of A pely e

.~
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Natural questions to address:

1) Abstragt from this experience to help formulate an optimization problem
in a new situation: Are there known/manageable families of optimization
problems to which | could reduce my new problem?

* Linear Programs

*Quadratic Programs

* Positive Semi-definite Programs

* Conic Programs

—2)-Analysis:

3) Algorithms: How do | compute the best or nearly best solutlons if they
exist?

4) Side paints:
l a)/Study how the solutions change with change in constraints?
\/"\/ Forexample;if theellipsoid was to be centred-at originor
I—~=——_~ was to be axis-aligned, the optimal solution could be
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Every Problem can be posed as an Optimization Problem (contd.)

@ Given a polygon P find the ellipsoid £ that is of smallest volume such that P C £.
@ Let vi,vy,...v, be the corners of the polygon P
@ The optimization problem will be:

minimize det(A™1)
[a11,a12...,@nn,b1,..bn)
subject to —vIAV>0,Vv#0

JAvi+bla <1, i€ {1.p}

@ How would you pose an optimization problem to find the ellipsoid of largest volume that

fits inside C? @ zulfx“a
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So Again: Mathematical optimization

minimize  fy(x)

subject to fi(x) < b;, i=1,...,m.

x = (X1,...,X,) : optimization variables
fi: R" - R, i=1,..,m: constraint functions

optimal solution x* has smallest value of fy among all vectors that satisfy the constraints
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Examples

portfolio optimization

@ variables: amounts invested in different assets

@ constraints: budget, max./min. investment per asset, minimym return

@ objective: overall risk or return variance 005\-10'“ ca{f‘s
\p n C \0\(23'1 >
0 e
o N h[p{
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Examples

device sizing in electronic circuits
@ variables: device widths and lengths
@ constraints: manufacturing limits, timing requirements, maximum area

@ objective: power consumption
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Examples
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o variables: model parameters = W Z«Gmr‘tﬁ "W
@ constraints: prior information, parameter limits = C _Q__ |]15
@ objective: measure of misfit or prediction error = L (u) "W
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More Generally..

@ X represents some action such as
portfolio decisions to be made
» resources to be allocated

» schedule to be created

» vehicle/airline deflections

v

@ Constraints impose conditions on outcome based on

» performance requirements
» manufacturing process

@ Objective fy(x) should be desirably small
> total cost
> risk
> negative profit
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Solving optimization problems

general optimization problems
o very difficult to solve

@ methods involve some compromise, e.g., very long computation time, or not always
finding the solution

exceptions: certain problem classes can be solved efficiently and reliably
@ least-squares problems
@ linear programming problems

@ convex optimization problems
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squar L) L (A
Least-sq ares (Ax lf))' o v
t(?‘j Qf rlrimmlze |Ax — b||3

solving least-squares problems IE'"ZA
e analytical solution: x* = (ATA) ~'ATb
o reliable and efficient algorithms and software
e computation time proportional to n%k (A € R**"); less if structured
@ a mature technology
using least-squares
@ least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights, adding

(o K <oy o [(aeb 4 AR
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Linear programming Coz Cde‘cg W yfji}'ublu
Xt-fgvn]’ ij n .

minimize ¢
X

subject to a,-sz by, i=1,...,m.
solving linear programs V\/\/\- (Z N
C(n'\s vaw . .{a}s,

@ no analytical formula for solution
e . _ wamrs, M0 g
@ reliable and efficient algorithms and software W,
e
@ computation time proportional to n?m if m > n; léss with structure
@ a mature technology
using linear programs
@ not as easy to recognize as least-squares problems

@ a few standard tricks used to convert problems into linear programs (e.g., problems
involving I1- or lo-norms, piecewise-linear functions)
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Convex optimization problem sg\':

¢t
f* minimize  £(x) Uf“'ﬂ'

%6(\‘;}( subject to (fi(x) < b;, i=1,...,m. //////

@ objective and constraint functions are convex:

filaxi + Bx2) < afi(x1) + Bfi(x)

il

@ includes least-squares problems and linear programs as special cases
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Convex optimization problem

solving convex optimization problems
@ no analytical solution
o reliable and efficient algorithms

e computation time (roughly) proportional to {n®, n?m, F}, where F is cost of evaluating
fi's and their first and second derivative

@ almost a technology
using convex optimization
o often difficult to recognize
@ many tricks for transforming problems into convex form

@ surprisingly many problems can be solved via convex optimization
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Example: m lamps illuminating n(small, flat) patches
Lamp power py

Hlumination
In

intensity |, at patch k depends linearly on lamp powers p;:
n
I, = Z akiPj, Akj = rka maX{COSij, O}
=1

problem: Provided the fixed locations(ay;'s), achieve desired illumination lges with bounded
lamp powers

minimize  maxx=1,.n | log(lx) — log(ldes) |
Pj

subject to 0 < pj < pmax, j=1,...,m.
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Example: m lamps illuminating n(small, flat) patches
How to solve? Some approximate(suboptimal) 'solutions’:-

@ use uniform power: p; = p, vary p

@ use least-squares:

n
minimize Z ke — les||3
g k=1
round p; if pj > pmax or p; <0
© use weighted least-squares:

n m
minimize Z”Ik_ /des||g+zwj|lpj_pmax/2”%
P k=1 =1

iteratively adjust weights w; until 0 < p; < ppax
@ use linear programming:

minimize  maxk=1,.n | Ik — ldes |
subject to 0 < p; < pmax, j=1,...,m.
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Example: m lamps illuminating n(small, flat) patches

@ Use convex optimization:| problem is equivalent to

\ X inimize  fo(p) = maxi=1,...nh(Ik/ ldes)
\\ 4\S\ P
\*)A‘ subjectto 0 < pj < pmax, j=1,...,m.

with h(u) = max{u, 1/u}

h(u)

@ fy is convex because maximum of convex functions is convex

@ exact solution obtained with effort ~ modest factor x least-squares effort
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?
@ no more than half of total power is in any 10 lamps.

@ no more than half of the lamps are on (p; > 0).
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?
@ no more than half of total power is in any 10 lamps.

@ no more than half of the lamps are on (p; > 0).

e answer: with (1), still easy to solve; with (2), extremely difficult.
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?
@ no more than half of total power is in any 10 lamps.

@ no more than half of the lamps are on (p; > 0).

e answer: with (1), still easy to solve; with (2), extremely difficult.

e moral: (untrained) intuition doesn't always work; without the proper background very
easy problems can appear quite similar to very difficult problems.
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Course goals and topics

Goals VL
@ recognize/formulate problems (such as the illumination problem) as convex optimization
problem

@ develop code for problems of moderate size (1000 lamps, 5000 patches)

@ characterize optimal solution (opt'\me\I—‘{)ower distribution), give limits of performance, etc
d

Topics et el
Convex sets, (Univariate) Functions) Optimization problem
w

Unconstrained Optimization: Analysis and Algorithms

Constrained Optimization: Analysis and Algorithms
Optimization Algorithms for Machine Learning

Discrete Optimization and Convexity (Eg: Submodular Minimization)

Other Examples and applications (MAP Inference on Graphical Models,
Majorization-Minimization for Non-convex problems)
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Grading and Audit

Grading
@ Quizzes and Assignments: 15%
Midsem: 25%
Endsem: 45%
Project: 15%

Audit requirement

@ Quizzes and Assignments and Project
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Nonlinear optimization

traditional techniques for general nonconvex problems involve comprom local optimization

methods (nonlinear programming)

@ find a point that minimizes fy among feasible points near it

o fast, can handle large problems

@ require initial guess

@ provide no information about distance to (global) optimum
global optimization methods

e find the (global) solution

@ worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Brief history of convex optimization

theory (convex analysis): cal900-1970
algorithms

1947: simplex algorithm for linear programming (Dantzig)
1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
1970s: ellipsoid method and other subgradient methods

1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)

late 1980s—now: polynomial-time interior-point methods for nonlinear convex optimization
(Nesterov & Nemirovski 1994)

applications
@ before 1990: mostly in operations research; few in engineering

@ since 1990: many new applications in engineering (control, signal processing,
communications, circuit design, . . .); new problem classes (semidefinite and second-order
cone programming, robust optimization)
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