
Lecture 1 : Introduction to Convex Optimization CS709
Instructor: Prof. Ganesh Ramakrishnan
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Introduction: Mathematical optimization
Motivating Example
Applications
Convex optimization
Least-squares(LS) and linear programming(LP) - Very common place

Course goals and topics
Nonlinear optimization
Brief history of convex optimization
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Mathematical optimization

(Mathematical) Optimization problem:-

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

x = (x1,...,xn) : optimization variables
fi : R

n → R, i = 1,...,m : constraint functions
optimal solution x∗ has smallest value of f0 among all vectors that satisfy the constraints
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Almost Every Problem can be posed as an Optimization Problem

Given a set C ⊆ ℜn find the ellipsoid E ⊆ ℜn that is of smallest volume such that C ⊆ E .
Hint: First work out the problem in lower dimensions.

Sphere Sr ⊆ ℜn centered at 0 is expressed as:
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Almost Every Problem can be posed as an Optimization Problem

Given a set C ⊆ ℜn find the ellipsoid E ⊆ ℜn that is of smallest volume such that C ⊆ E .
Hint: First work out the problem in lower dimensions.

Sphere Sr ⊆ ℜn centered at 0 is expressed as: S =
{

u ∈ ℜn|∥u∥2 ≤ r
}

Ellipsoid E ⊆ ℜn is expressed as:
E =

{

v ∈ ℜn|Av + b ∈ S1

}

=
{

v ∈ ℜn|∥Av + b∥2 ≤ 1
}

. Here, A ∈ Sn
++, that is, A is

an n × n (strictly) positive definite matrix.

The optimization problem will be:

minimize
[a11,a12...,ann,b1,..bn]

det(A−1)

subject to v
TAv > 0, ∀ v ̸= 0

∥Av + b∥2 ≤ 1, ∀v ∈ C
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Every Problem can be posed as an Optimization Problem (contd.)

Given a polygon P find the ellipsoid E that is of smallest volume such that P ⊆ E .

Let v1,v2, ...vp be the corners of the polygon P

The optimization problem will be:

minimize
[a11,a12...,ann,b1,..bn]

det(A−1)

subject to − v
TAv > 0, ∀ v ̸= 0

∥Avi + b∥2 ≤ 1, i ∈ {1..p}
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Natural questions to address:

1) Abstract from this experience to help formulate an optimization problem
in a new situation: Are there known/manageable families of optimization
problems to which I could reduce my new problem? 

* Linear Programs
* Quadratic Programs
* Positive Semi-definite Programs
* Conic Programs

2) Analysis: Does the problem have a unique solution or a solution at all? 
3) Algorithms: How do I compute the best or nearly best solutions if they

exist?
4) Side points: 

a) Study how the solutions change with change in constraints?
For example, if the ellipsoid was to be centred at origin or 
was to be axis-aligned, the optimal solution could be 
very different



Every Problem can be posed as an Optimization Problem (contd.)

Given a polygon P find the ellipsoid E that is of smallest volume such that P ⊆ E .

Let v1,v2, ...vp be the corners of the polygon P

The optimization problem will be:

minimize
[a11,a12...,ann,b1,..bn]

det(A−1)

subject to − v
TAv > 0, ∀ v ̸= 0

∥Avi + b∥2 ≤ 1, i ∈ {1..p}

How would you pose an optimization problem to find the ellipsoid of largest volume that
fits inside C?
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So Again: Mathematical optimization

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

x = (x1,...,xn) : optimization variables
fi : R

n → R, i = 1,...,m : constraint functions
optimal solution x∗ has smallest value of f0 among all vectors that satisfy the constraints
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Examples

portfolio optimization

variables: amounts invested in different assets

constraints: budget, max./min. investment per asset, minimum return

objective: overall risk or return variance
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Examples

device sizing in electronic circuits

variables: device widths and lengths

constraints: manufacturing limits, timing requirements, maximum area

objective: power consumption
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Examples

data fitting - machine learning

variables: model parameters

constraints: prior information, parameter limits

objective: measure of misfit or prediction error
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More Generally..

x represents some action such as
▶ portfolio decisions to be made
▶ resources to be allocated
▶ schedule to be created
▶ vehicle/airline deflections

Constraints impose conditions on outcome based on
▶ performance requirements
▶ manufacturing process

Objective f0(x) should be desirably small
▶ total cost
▶ risk
▶ negative profit
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Solving optimization problems

general optimization problems

very difficult to solve

methods involve some compromise, e.g., very long computation time, or not always
finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

least-squares problems

linear programming problems

convex optimization problems
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Least-squares

minimize
x

∥Ax − b∥22

solving least-squares problems

analytical solution: x∗ = (ATA) −1ATb

reliable and efficient algorithms and software

computation time proportional to n2k (A ∈ Rk×n); less if structured

a mature technology

using least-squares

least-squares problems are easy to recognize

a few standard techniques increase flexibility (e.g., including weights, adding
regularization terms)
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Linear programming

minimize
x

cTx

subject to aT
i x ≥ bi, i = 1, . . . ,m.

solving linear programs

no analytical formula for solution

reliable and efficient algorithms and software

computation time proportional to n2m if m ≥ n; less with structure

a mature technology

using linear programs

not as easy to recognize as least-squares problems

a few standard tricks used to convert problems into linear programs (e.g., problems
involving l1- or l∞-norms, piecewise-linear functions)
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Convex optimization problem

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

objective and constraint functions are convex:

fi(αx1 + βx2) ≤ αfi(x1) + βfi(x2)

if α + β = 1, α ≥ 0, β ≥ 0

includes least-squares problems and linear programs as special cases
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Convex optimization problem

solving convex optimization problems

no analytical solution

reliable and efficient algorithms

computation time (roughly) proportional to {n3, n2m, F}, where F is cost of evaluating
fi’s and their first and second derivative

almost a technology

using convex optimization

often difficult to recognize

many tricks for transforming problems into convex form

surprisingly many problems can be solved via convex optimization
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Example: m lamps illuminating n(small, flat) patches

intensity Ik at patch k depends linearly on lamp powers pj:

Ik =

n
∑

j=1

akjpj, akj = rkj
−2max{cosθkj, 0}

problem: Provided the fixed locations(akj’s), achieve desired illumination Ides with bounded
lamp powers

minimize
pj

maxk=1,..,n | log(Ik)− log(Ides) |

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m.
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Example: m lamps illuminating n(small, flat) patches
How to solve? Some approximate(suboptimal) ’solutions’:-

1 use uniform power: pj = p, vary p
2 use least-squares:

minimize
pj

n
∑

k=1

∥Ik − Ides∥
2
2

round pj if pj > pmax or pj < 0
3 use weighted least-squares:

minimize
pj

n
∑

k=1

∥Ik − Ides∥
2
2 +

m
∑

j=1

wj∥pj − pmax/2∥
2
2

iteratively adjust weights wj until 0 ≤ pj ≤ pmax

4 use linear programming:

minimize maxk=1,..,n | Ik − Ides |

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m.
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Example: m lamps illuminating n(small, flat) patches

Use convex optimization: problem is equivalent to

minimize
pj

f0(p) = maxk=1,..,nh(Ik/Ides)

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m.

with h(u) = max{u, 1/u}

f0 is convex because maximum of convex functions is convex

exact solution obtained with effort ≈ modest factor × least-squares effort
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?

1 no more than half of total power is in any 10 lamps.

2 no more than half of the lamps are on (pj > 0).
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?

1 no more than half of total power is in any 10 lamps.

2 no more than half of the lamps are on (pj > 0).

answer: with (1), still easy to solve; with (2), extremely difficult.
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?

1 no more than half of total power is in any 10 lamps.

2 no more than half of the lamps are on (pj > 0).

answer: with (1), still easy to solve; with (2), extremely difficult.

moral: (untrained) intuition doesn’t always work; without the proper background very
easy problems can appear quite similar to very difficult problems.
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Course goals and topics

Goals

recognize/formulate problems (such as the illumination problem) as convex optimization
problem

develop code for problems of moderate size (1000 lamps, 5000 patches)

characterize optimal solution (optimal power distribution), give limits of performance, etc

Topics

Convex sets, (Univariate) Functions, Optimization problem

Unconstrained Optimization: Analysis and Algorithms

Constrained Optimization: Analysis and Algorithms

Optimization Algorithms for Machine Learning

Discrete Optimization and Convexity (Eg: Submodular Minimization)

Other Examples and applications (MAP Inference on Graphical Models,
Majorization-Minimization for Non-convex problems)
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Grading and Audit

Grading

Quizzes and Assignments: 15%

Midsem: 25%

Endsem: 45%

Project: 15%

Audit requirement

Quizzes and Assignments and Project
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Nonlinear optimization

traditional techniques for general nonconvex problems involve comprom local optimization
methods (nonlinear programming)

find a point that minimizes f0 among feasible points near it

fast, can handle large problems

require initial guess

provide no information about distance to (global) optimum

global optimization methods

find the (global) solution

worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Brief history of convex optimization

theory (convex analysis): ca1900–1970
algorithms

1947: simplex algorithm for linear programming (Dantzig)

1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)

1970s: ellipsoid method and other subgradient methods

1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)

late 1980s–now: polynomial-time interior-point methods for nonlinear convex optimization
(Nesterov & Nemirovski 1994)

applications

before 1990: mostly in operations research; few in engineering

since 1990: many new applications in engineering (control, signal processing,
communications, circuit design, . . .); new problem classes (semidefinite and second-order
cone programming, robust optimization)
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